Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Wen-Bing Yuan, Shan-Shan Wu, Ming Liu, Hai-Yang Wang and Qi Zhang*

Hainan Provincial Key Laboratory of Fine Chemicals, Hainan University, Hainan 570228, People's Republic of China

Correspondence e-mail:
zhangqi_hainu@163.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.038$
$w R$ factor $=0.082$
Data-to-parameter ratio $=12.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
trans-Aquabis(quinoline-2-carboxylato- $\kappa^{2} N, O$)cobalt(II)

In the molecule of the title complex, $\left[\mathrm{Co}\left(\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{NO}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$, the five-coordinate $\mathrm{Co}^{\mathrm{II}}$ ion displays a distorted squarepyramidal coordination geometry defined by the two quinoline N atoms and two O atoms of the carboxylate groups located in the basal square plane, and one water O atom in the apical position. $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving the water molecule form a layer parallel to the (001) plane.

Comment

Quinoline-2-carboxylate is known to be an effective chelating ligand for many transition metal ions (Martell \& Smith, 1974). Some crystal structures of metal complexes of 2-quinolinecarboxylate have been reported, including $\mathrm{Cu}^{\mathrm{II}}$ (Haendler, 1986), $\mathrm{Mn}^{\text {II }}$ (Haendler, 1996; Okabe \& Koizumi, 1997), $\mathrm{Fe}^{\text {II }}$ (Okabe \& Makino, 1998), $\mathrm{Co}^{\text {II }}$ (Okabe \& Makino, 1999; Okabe \& Muranishi, 2003) and $\mathrm{Ni}^{\mathrm{II}}$ (Odoko et al., 2001; Okabe \& Muranishi, 2003).

The $\mathrm{Co}^{\text {II }}$ atom in the title complex, (I), is five-coordinate in a distorted square-pyramidal environment, with two chelating quinoline-2-carboxylate ligands coordinating through the quinoline N and the carboxylate O atoms, forming a fivemembered ring in the basal plane. The apical position is occupied by a water molecule (Fig. 1).

It is interesting to note that the previous $\mathrm{Co}^{\mathrm{II}}$ complexes (Okabe \& Makino, 1999; Okabe \& Muranishi, 2003) are hexacoordinate with two water molecules at the apices, whereas in (I) there is only one coordinated water molecule.

An interesting feature is the occurrence of hydrogenbonding interactions which result in the formation of layers parallel to the (001) plane (Table 1 and Fig. 2). The hydrogen

Received 22 October 2006
Accepted 1 November 2006
bonds between the water molecule and the carbonyl O atoms form an $R_{4}^{4}(21)$ ring (Etter et al., 1990) (Fig. 2).

Experimental

Red crystals of (I) were obtained by slow evaporation of a solution in methanol-water ($1: 1 \mathrm{v} / \mathrm{v}$) of a mixture of quinoline-2-carboxylic acid and $\mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (molar ratio 2:1).

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{NO}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.594 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Monoclinic, $P 2_{1} / n$
$a=7.753$ (1) \AA
$b=7.620$ (2) A
$c=29.940$ (5) A
$\beta=97.05$ (1) ${ }^{\circ}$
$V=1755.4$ (6) \AA^{3}

Data collection

Siemens $P 4$ diffractometer

ω scans
Absorption correction: empirical
via ψ scans
(North et al., 1968)
$T_{\text {min }}=0.67, T_{\text {max }}=0.82$
3947 measured reflections

Refinement

Refinement on F^{2}
3275 independent reflections
2131 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.030$
$\theta_{\text {max }}=25.5^{\circ}$
3 standard reflections
every 97 reflections intensity decay: 5.0\%
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.082$
$S=0.87$
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0379 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
3275 reflections
$\Delta \rho_{\text {max }}=0.51$ e \AA^{-3}
$\Delta \rho_{\min }=-0.30 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 5-\mathrm{H} 5 A \cdots \mathrm{O} 4^{\text {i }}$	0.83	1.80	2.613 (3)	168
$\mathrm{O} 5-\mathrm{H} 5 \mathrm{~B} \cdots \mathrm{O} 2^{\text {ii }}$	0.82	1.82	2.640 (3)	178

Symmetry codes: (i) $x, y+1, z$; (ii) $x-1, y, z$.
All H atoms attached to C atoms were positioned geometrically and refined as riding, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. Water H atoms were located in difference Fourier maps and then treated as riding on the parent O atom, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$.

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 1997b); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and MERCURY (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.

We thank the Open Fund (No. hnfc2006005) of Hainan Provincial Key Laboratory of Fine Chemicals for financial support.

References

Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Etter, M. C., MacDonald, J. C. \& Bernstein, J. (1990). Acta Cryst. B46, 256-262.

Figure 1
The molecular structure of the title compound, showing the atomlabelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

Figure 2
Partial packing view of the title complex, showing the hydrogen-bond interactions and the formation of $R_{4}^{4}(21)$ rings and layers parallel to the (001) plane. H atoms not involved in hydrogen bonding have been omitted for clarity. Hydrogen bonds are represented as dashed lines.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Haendler, H. M. (1986). Acta Cryst. C42, 147-149.
Haendler, H. M. (1996). Acta Cryst. C52, 801-803.
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Martell, A. E. \& Smith, R. M. (1974). Critical Stability Constants, Vol. 1, pp. 78, 372; Vol. 2, p. 219. New York: Plenum Press.
North, A. C. T., Phillips, D. C. Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Odoko, M., Muranishi, Y. \& Okabe, N. (2001). Acta Cryst. E57, m267-m269.
Okabe, N. \& Koizumi, M. (1997). Acta Cryst. C53, 852-854.
Okabe, N. \& Makino, T. (1998). Acta Cryst. C54, 1279-1280.
Okabe, N. \& Makino, T. (1999). Acta Cryst. C55, 300-302.
Okabe, N. \& Muranishi, Y. (2003). Acta Cryst. C59, m228-m230.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1994). XSCANS. Siemens Analytical X-ray Instruments Inc., Wisconsin, USA.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

